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Abstract. We present ROMEO, a method for reconstructing 3D human-
object interaction models from images. Depth-size ambiguities caused by
unknown object and human sizes make the joint reconstruction of hu-
mans and objects into a plausible configuration matching the observed
image a difficult task. Data-driven methods struggle with reconstruct-
ing 3D human-object interaction models when it comes to unseen ob-
ject categories or object shapes, due to the difficulty of obtaining suffi-
cient and diverse 3D training data, and often even of acquiring object
meshes for training. To address these challenges, we propose ROMEO,
a novel method that does not require any manual human-object con-
tact annotations or 3D data supervision. ROMEO integrates the flexi-
bility of optimization-based methods and the effectiveness of foundation
models with large modeling capacity in a plug-and-play fashion. It fur-
ther incorporates a novel depth-based loss term and largely simplifies
the optimization objective of previous methods, eliminating the require-
ment for manual annotations of contacts and object scales and rendering
object-category–specific parameter finetuning unnecessary. We quantify
the improvement of ROMEO over existing state-of-the-art methods on
two human-object interaction datasets, BEHAVE and InterCap, both
quantitatively and qualitatively. We further demonstrate the generaliza-
tion ability of ROMEO on in-the-wild images.

1 Introduction

Accurate modeling of human-object interactions is an important task, as humans
constantly engage with objects in their immediate environment. Gaining insights
into human-object interactions provides numerous benefits, including interaction
modeling in virtual reality, object-centric learning for embodied agents executing
daily tasks, and enhanced human-robot interactions within the 3D world. The
prospect of using an approach capable of reconstructing 3D models from com-
monly available 2D images holds significant promise, as it offers an accessible
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Fig. 1: Reconstruction of 3D human-object interaction models from in-the-
wild images. We propose ROMEO, a method that reconstructs 3D interaction mod-
els from images using a simplified yet effective optimization objective using estimated
depth maps. Our method does not require any human-object contact annotations or
prior knowledge of object scales or object categories. We visualize input images, initial
scene reconstructions showing strong depth-size ambiguities when viewed from differ-
ent viewpoints, and improved final reconstructions after our joint optimization step
reasoning about the human-object relationships using depth estimation.

and generalizable means to obtain authentic and diverse 3D models of humans
interacting with objects.

Reconstructing 3D human-object interaction models from generic images is a
challenging task. Merely reconstructing 3D models from 2D images is already dif-
ficult, demanding accurate detection and segmentation, all without prior knowl-
edge about the scene and in the presence of object occlusions. Interaction mod-
eling faces a bigger challenge: it requires not only identifying which concrete
object in the scene a human is interacting with but also reconstructing detailed
3D humans and objects in a manner consistent with the image observation and
conforming to plausible configurations. Examples of implausible configurations
include a person suspended in mid-air or a flying basketball located at an un-
natural angle relative to the thrower’s hand. The task is further complicated
by natural occlusions resulting from interactions, such as a human sitting on a
chair, alongside depth ambiguities arising from only observing the scene from
a single perspective. Lastly, diverse object orientations emerging from different
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object affordances [5], for instance carrying a keyboard as opposed to typing on
one, greatly expand the object pose search space.

Recent advancements in approaching this task involve leveraging 3D data,
obtained via multiview capturing systems [2,8,9,34], to develop learning methods
for reconstructing 3D human-object interaction models. Nonetheless, collecting
high-fidelity 3D data typically requires specialized hardware systems, and ex-
tensive effort. The effectiveness of current learning models [9, 17, 26–28, 34] is
hindered by both the scarcity of available 3D data and their limited ability to
generalize to out-of-distribution scenarios.

On the other hand, existing image-based interaction modeling approaches [30,
33] rely on off-the-shelf 3D human reconstruction models [15, 32] and shape re-
construction methods from images [3, 4, 11] for initialization, and jointly opti-
mize the obtained 3D humans and objects to leverage interaction constraints
and reduce ambiguity. However, one of the inherent challenges faced by these
image-based reconstruction methods is their difficulty in handling occlusions.
Furthermore, many existing approaches encounter scalability issues, as they rely
on human annotations to identify contact regions between bodies and objects.
These annotated regions are then used in a joint optimization step to bring hu-
mans and objects in contact. This process of joint optimization often involves
complex loss formulations, necessitating the tuning of weight parameters specific
to each object category.

Meanwhile, the recent advancements in foundation models for various core
computer vision tasks such as visual grounding [16], segmentation [13] and depth
estimation [1,19], showcasing remarkable performance, have opened up new pos-
sibilities for human-object interaction modeling. Building upon this progress, we
aim to revisit existing image-based optimization approaches and gain insights
that can further guide the development of 3D interaction modeling techniques.
Our primary objective is to investigate the extent to which 3D information can
be extracted from images without relying on 3D data supervision.

To accomplish this, we make the following key contributions: First, we iden-
tify a major bottleneck in existing approaches, which lies in the reconstruction
quality of objects following initialization. Previous approaches have overlooked
the complexity associated with the initialization step, which encompasses both
shape reconstruction and pose estimation. Each of these components is still an
active research field in its own right. To address this challenge, we use foundation
models in a plug-and-play fashion to improve both the segmentation quality and
the detection rate of the objects being interacted with. Subsequently, we propose
a new joint optimization step that only uses a silhouette loss [33] and a novel
relative depth loss. Surprisingly, we find that many of the previously used 2D
image-based and 3D geometry-based losses can potentially be substituted with
a depth-based loss, in particular when the initialized 3D models are reasonably
accurate. Our simplified approach focused on optimizing the depth ambiguity
between humans and objects is highly effective, reducing the need for multiple
complex loss terms and the fine-tuning of weight parameters specific to each
object category [33].
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Building upon our findings, we propose a revised optimization-based recon-
struction approach that delivers significantly better reconstruction results while
simplifying the optimization objectives. We conduct quantitative and qualitative
evaluations on two datasets: BEHAVE [2], which consists of full-body human-
object interaction frame sequences with ground-truth 3D human and object
models, and InterCap [8], a large-scale interaction dataset featuring both object
categories found in BEHAVE as well as novel objects with substantial differ-
ences. Our approach ROMEO demonstrates significant improvements over the
state-of-the-art optimization-based method [33] and greatly reduces the distance
to the state-of-the-art learning-based model [27] in terms of reconstruction qual-
ity. We further showcase the generalization ability of our approach on in-the-wild
images, highlighting its robustness in real-world scenarios where training data is
missing and a large variety of possible object categories and instances exist.

2 Related Work

Human-object interaction modeling. Efficiently modeling 3D human-object
interactions (HOIs) requires reasoning about the human bodies and objects
jointly instead of performing the reconstruction separately. In particular, several
existing works show that human-object contact estimation plays a crucial role in
interaction modeling. These methods explicitly consider the contacts between hu-
man bodies and objects when inferring their shapes and 3D spatial arrangements
from a single RGB image. PHOSA [33] proposes an optimization-based pipeline
that minimizes the distances between pairs of manually segmented human and
object parts deemed likely to be in contact if the human and the object are close.
HolisticMesh [26] jointly reconstructs human and object meshes by minimizing
a set of human-object interaction losses concerning contacts/collisions and the
human-ground distance. However, the requirement of manual annotations of con-
tact regions [6,23,26,33] makes it hard to generalize these methods to images in
the wild as well as unusual object interactions, such as sitting on a table [2]. The
BEHAVE [2] dataset provides a large multi-view RGB-D dataset with annotated
human-object contacts. CHORE [27] builds a neural reconstruction model that
learns to predict contact points from input images while reconstructing humans,
objects, and their interactions. RICH [7] also learns 3D contacts, but merely pre-
dicts points on the human in contact with any unidentified point in the scene.
VisTracker [28] and InterDiff [29] reason about human-object interactions across
time rather than focusing on single-image reconstruction, exploiting temporal
cues unavailable in our task setting to boost performance.

In addition to the learning-based approaches, Wang et al. [25] leverage large
language models (LLMs) to generate estimations of contacts based on the rec-
ognized actions. Our approach also aims to remove the requirement of human
annotation. Unlike previous methods, we propose to leverage the alignment of
the estimated human and object depths as an informative prior for reasoning
about 3D arrangements. This yields a principled and much simpler optimization
objective and shows strong performance against the SOTA.
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H-O interaction modeling with depth information. Depth ambiguities
are one of the challenges for directly recovering 3D human-object interactions.
Optimization based on predefined contact regions presents merely one way to
resolve such ambiguities. Other approaches attempt to resolve depth ambigu-
ities by including depth information in pipelines. NeuralDome [34] optimizes
contacts based on the tracked humans and objects in multiviews. The multiview
data implicitly contains the depth alignment of humans and objects, recover-
able from different views. MOVER [30] makes use of depth constraints derived
from human-scene occlusions and human movement trajectories. However, these
approaches use multiple images, either multiview or from motion sequences, to
construct depth information. We do not have access to such data when modeling
interactions from single images. For a single image, the relative depths between
humans and objects can be estimated using any off-the-shelf depth estimation
model. We hypothesize this relative depth should be preserved in the rendered
humans and objects when the reconstruction matches the single RGB input im-
age. Our depth loss follows this intuition, and we demonstrate that it indeed
presents a strong prior for human-object interaction modeling.
Generalizing H-O interaction to large object category domains. Many
H-O interaction reconstruction approaches specialize in only a limited set of
shapes or perform category-specific optimization. To improve generalizability
across object categories, AutoSDF [18] and 3DILG [31] model the distribution
over 3D shapes to generate multiple plausible outputs. Wang et al. [25] use
LLMs to generalize contact labels to new categories. In this work, we leverage
the Grounding DINO [16] detection model combined with Segment-Anything [12]
to perform open-vocabulary instance segmentation. Together with the simplified
loss, we succeed in performing reconstructions for open vocabulary categories.

3 Method

This section describes our approach to reconstructing a 3D representation that
captures the interaction between the human and the object depicted in a given
image significantly simpler than previous work. Further implementation details
of our approach are provided in subsection 4.4.

3.1 Optimization Method Preliminaries

Existing optimization frameworks [25, 26, 33] leverage holistic context cues by
considering the interactive relationship between humans and objects. These
frameworks typically consist of a separate initialization stage followed by a joint
human-object optimization stage. We follow the same two-stage pipeline in our
approach (see Figure 2).
Stage I. First, humans and objects are independently reconstructed. For 3D hu-
man reconstruction, state-of-the-art methods such as PARE [15] and FrankMo-
cap [10,21] are commonly used to initialize the 3D human meshes. These meth-
ods work reasonably well even under occlusion. The reconstructed meshes are
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Fig. 2: Method overview. Our method reconstructs 3D human-object interaction
models from images. In the initialization step, we reconstruct 3D humans and objects
independently. An instance segmentation mask and a depth map, estimated by existing
foundational models, are used to obtain better segmentation masks of the object of
interest and subsequently improve its initial estimation. We then jointly reason about
the 3D arrangement of both humans and objects using a novel combination of relative
depth loss and a silhouette loss.

represented by the SMPL model M(β, θ), where β ∈ R10 represents the shape
parameters and θ ∈ R3×24 represents the pose parameters for the 24 joints. On
the other hand, reconstructing 3D objects poses a greater challenge due to the
diversity of object categories and shapes within each category. Current solutions
rely on template matching with observed instance segmentation masks and em-
ploy differentiable renderers [3, 22, 24] to estimate object poses. However, the
object reconstruction performance is heavily dependent on the quality of the
segmentation masks and is also hindered by occlusions from human interactions.
Stage II. The arrangements between 3D humans and objects are jointly es-
timated in this optimization step to match the image observations while ob-
taining plausible interaction models. The main idea of this step is to leverage
the interactions between humans and objects, which are commonly formulated
as 3D geometry-based losses such as contact loss and penetration loss [33] to
ensure correct contacts between human and object while avoiding mesh inter-
penetration. Previous approaches of modeling human-object and human-scene
interactions rely on manual annotations to establish contact between humans and
objects [6,30,33]. In more recent work, text prompts are employed to extract con-
tact labels from large language models [25], providing improved generalization
abilities. However, this method still requires a known 3D object segmentation to
apply the semantic contact information in the 3D space. Notably, such a joint
optimization step is also used in learning-based methods such as CHORE [27]
and VisTracker [28].
Challenges. While current state-of-the-art learning methods can estimate the
distance fields and reconstruct 3D interaction models from images, they fre-
quently fail to obtain satisfactory results without nearly perfect segmentation
masks or when objects are occluded. Often, the models have limited general-
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ization ability and struggle to handle out-of-distribution objects not seen in
the training data. Optimization-based methods, on the other hand, do not re-
quire training data and show better generalizability to new object categories
and shapes. Their central idea is to perform joint optimization by leveraging the
interactions between humans and objects. However, existing approaches rely on
manual annotations of contact regions for each object category. Such label col-
lection is not only expensive but also fails to capture diverse interactions within
each object category. In addition, joint optimization frequently requires category-
specific parameter tuning to work with various object sizes and shapes. In this
paper, we address these challenges and improve the performance of optimization
methods over the current state of the art in terms of accuracy, robustness, and
generalization ability while boosting computational speed.

(a) Input image (b) Detected instances (c) Estimated depth

Fig. 3: Depth-based object selection. Two instances of the “stool” class are detected
(3b), and the estimated depth (3c) is used to select the object with the closest estimated
proximity to the human for subsequent reconstruction.

3.2 Object Initialization

Reconstructing 3D shapes from images involves two challenging tasks: object
shape reconstruction and pose estimation. These tasks become particularly chal-
lenging when objects are occluded by humans during interactions. We observe
that the quality of the initial object reconstruction has a direct influence on
the final reconstruction models. Surprisingly, this crucial aspect has been largely
overlooked by previous approaches [25,27,33].
Object segmentation. We employ Grounding DINO [16] together with the
Segment Anything Model (SAM) [12] to obtain the object segmentation masks
in an open-vocabulary setting. Specifically, we run Grounding DINO on images
using the category of the object currently being interacted with as a prompt,
and for each obtained bounding box, we infer the object’s mask through a mask
prompt to SAM. The open-vocabulary approach made possible by using foun-
dation models alleviates the need to adapt the segmentation pipeline to dataset-
specific vocabularies, providing flexibility in handling diverse object categories.
Object selection. In order to reconstruct the interaction pair, we need to first
identify the pair of a human and an object that is involved in the interaction.
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Unlike prior works that rely on carefully engineered heuristics, e.g. overlaps
between the detected humans and objects, we introduce a novel, simple depth-
based selection rule. This rule aims to determine the object that exhibits the
closest proximity to the detected human. Specifically, we use an off-the-shelf
depth estimator [19, 20] and intersect its output with each previously obtained
SAM mask to determine the average depth for each instance. We then select the
object closest to the human in terms of depth. See Figure 3 for a visualization of
the object selection procedure. Note that while in the following we focus on the
interactions of the human that is closest to the camera based on the estimate,
our framework still allows for reconstructing multiple interactions (see Figure 5).
Object pose initialization. To estimate the 6-degree-of-freedom object poses,
we use a differentiable renderer [4]. This process involves fitting the projected
shapes of the object templates to the segmentation masks obtained from the
input images. Note that object pose estimation can be challenging, particularly
in the presence of occlusion. Similar to PHOSA [33], we minimize a silhouette loss
Lsilhouette combined with a Chamfer loss for a fixed number of iterations during
the initialization. See [33] for details regarding these two losses. Nevertheless, we
significantly speed up the pose initialization process by using a more performant
renderer and reducing the number of vertices in our object templates. More
details can be found in the supplementary material.

3.3 Joint Optimization

Inspired by previous works [6, 27, 33], we formulate a joint optimization process
to reason about spatial arrangements between humans and objects in 3D.

We hypothesize that the quality of the reconstructed objects in the initial step
could be significantly improved by using foundational models, and no contact
loss or penetration loss [33] is needed for the joint optimization. Specifically,
we consider a novel combination of silhouette loss and relative depth loss and
optimize for the object pose, which involves rigid transformations. This leads
to a much simpler objective function compared to prior works. This simplicity
allows us to obtain meaningful reconstructions, without the need for fine-tuning
weight parameters for multiple loss terms and for each object category.
Silhouette loss. We use the same silhouette loss Lsilhouette as in the object pose
initialization and minimize the mismatch between the masks of the rendered 3D
object’s silhouette and the corresponding instance segmentation mask.
Relative depth loss. We observe that the image-based optimization objective
often leads to reconstructions that look plausible from the camera view, yet
have obvious mismatches when viewed from the side, such as the bicycle in
Figure 1. Motivated by this, we propose a relative depth loss term that adds
constraints in the camera viewing (depth) direction. During each iteration of
the joint optimization, we obtain a rendered object depth map D̃O as well as a
person depth map D̃P using a differentiable renderer. We then compare them to
the reference 2D object depth map DO and person depth map DP (see Figure 2,
Reference depth). Here, DO and DP are obtained from an off-the-shelf depth
estimator [1], or alternatively a depth sensor, if available.
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Fig. 4: Qualitative results of ROMEO. We compare the results of our proposed
method ROMEO with PHOSA [33] on the BEHAVE dataset. We show front and side
views of the initial results and the final results after joint optimization of each method.
Our joint optimization improves the initial estimations in recovering plausible contacts
with more plausible depth relationships between humans and objects.

We use a simple yet effective depth loss by computing, for both the reference
depth map D and rendered depth map D̃, the ratios r resp. r̃ between each
depth map’s object mean depth and person mean depth, averaged on the pixels
of their respective segmentation masks, and enforcing that this ratio matches
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between the reference and the rendered depth maps, as in Eq. 2:

r =

∑
i∈MO

D(i)/|MO|

ε+
∑

i∈MP

D(i)/|MP |
, r̃ =

∑
i∈MO∩M̃O

D̃(i)/|MO ∩ M̃O|

ε+
∑

i∈MP∩M̃P

D̃(i)/|MP ∩ M̃P |
(1)

Ldepth =
(
1− r̃/ (ϵ+ r)

)2
, (2)

where we sum depth values over the pixels of the reference and rendered object
and person masks (MO,MP ), (M̃O, M̃P ), and ε is a small positive constant to
avoid dividing by 0. We assume DO(i), DP (i) > 0 ∀i. This depth loss term Ldepth
ensures consistent depth values between the reconstructed human and object and
their corresponding depth maps, while also establishing scale invariance due to
the inherent cancellation of the depth scale through division, allowing us to put
into relation depth maps of varying scales from different sources such as the
mesh renderer and the depth estimator as long as the camera center is assumed
to be at depth 0, as is the case for metric depth maps [1].

Our final optimization objective is

L = αλ1Ldepth + λ2Lsilhouette (3)

where α = Lsilhouette, 0/Ldepth, 0 is a scaling factor based on the ratio of the sil-
houette loss and the depth loss during the first joint optimization iteration. This
factor acts to counter the possibly large disparity between Ldepth and Lsilhouette
arising from the ratio r̃/r and causing one of the loss terms to be neglected.

4 Experiments and Analysis

In this section, we investigate variations of our framework to evaluate key design
decisions (Sec. 4.1); present quantitative and qualitative comparisons with state-
of-the-art methods, including an optimization-based method and a learning-
based approach (Sec. 4.2); and assess the generalization ability of our approach
on in-the-wild images (Sec. 4.3).
Datasets. We evaluate on the BEHAVE [2] and InterCap [8] datasets. Both
datasets capture full-body human-object interactions. They consist of multi-
view RGB-D video frames of people interacting with objects in diverse ways.
The corresponding 3D SMPL/SMPL-H body models, object shapes and poses
are provided in both datasets. BEHAVE [2] contains about 15k frames where
humans interact with 20 common objects, with multiple interactions included for
many object categories. For instance, for the chair category, interaction types in-
clude sitting, holding, lifting, standing, and touching. We evaluate our proposed
method on the images from camera view 1 and recording date 3 for BEHAVE,
consistent with [27]. For InterCap, we evaluate on 1.1K keyframes employed
in a previous study [28]. Using the available ground-truth masks provided by
BEHAVE, we filter out images that are > 70% occluded during the evalua-
tion, following the setup in CHORE [27]. This results in about 4.1K samples on
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Category PointRend Ours
Det. Rate (%) IoU (%) Det. Rate (%) IoU (%)

Chairwood 39.6 37.4 93.3 57.1
Chairblack 32.1 31.9 93.9 61.1
Suitcase 62.8 62.7 90.4 78.7
Backpack 22.7 19.4 90.7 68.4
Yogaball 47.2 39.9 97.2 72.6

Basketball 5.8 4.3 80.2 62.7

Table 1: Comparison of object mask IoUs and object detection rates on
BEHAVE between the PointRend [14]-based strategy employed by previous work [33]
and our Grounding DINO [16] + Segment Anything [13] strategy.

Instance Selection Det. Rate (%) IoU (%)
Ground truth 75.5 66.8

Heuristic 74.8 65.7
Depth-based 75.1 66.3

Table 2: Comparison of object instance selection methods on BEHAVE, with
object detection rates and IoUs between selected object mask and GT object mask.
Category-wise results are provided in the supplementary material.

which we evaluate for BEHAVE. InterCap [8] contains about 67k frames where
humans interact with 10 objects of various sizes and affordances. Similar to other
work [28], data from subjects 9 (female) and 10 (male) are used as the test set.
Evaluation metrics. We evaluate the reconstruction accuracy by computing
the two-way Chamfer distances [2,25,27] for humans and objects independently.
We use Procrustes analysis to align the estimated SMPL model H and the 3D
object O to the ground truth. Note that this alignment is performed on the com-
bined human-object meshes as in previous works [27,28]. All Chamfer distances
are reported in centimeters.

4.1 Object Initialization

Acquiring the object segmentation masks is the first step of the pipeline, and
serves as the foundation for all following processes. Prior approaches, such as
PHOSA [33], rely on detectors trained for distinct categories, limiting their ef-
ficacy on unfamiliar categories. In contrast, our method integrates Grounding
DINO [16] and SAM [12], enabling robust performance across a diverse range
of categories. In Table 1, we only use categories where PointRend [14], utilized
by PHOSA [33], can successfully detect objects. For other categories in BE-
HAVE [2], PHOSA’s detection abilities are limited as the category is neither
seen during training nor exists in the pre-defined classes. As evidenced in Ta-
ble 1, our detection strategy outperforms PHOSA by a large margin in terms
of both detection rates and IoUs. In the BEHAVE dataset, the “suitcase” cate-
gory is most frequently encountered during the training of PointRend, resulting
in the highest detection rate and IoU. Nevertheless, our detection strategy still
surpasses it by a notable margin.
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Method Mask Depth Stage BEHAVE InterCap
H ↓ O ↓ H ↓ O ↓

CHORE [27]

GT

- Final 5.58 ± 2.11 10.66 ± 7.71 7.12 12.59
PHOSA [33] - Final 12.17 ± 11.13 26.62 ± 21.87 11.20 20.57

ROMEO (ours) GT Initial 8.54 ± 3.17 20.13 ± 16.34 10.23 ± 6.41 22.67 ± 14.82
ROMEO (ours) GT Final 8.23 ± 3.00 16.91 ± 11.65 9.16 ± 5.70 18.47 ± 12.81
CHORE [27]

Est

- Final 7.44 ± 4.41 25.17 ± 28.02 8.96 ± 2.85 * 24.83 ± 15.48 *
PHOSA [33] - Final 11.01 ± 6.29 34.53 ± 24.24 8.77 ± 3.67 26.90 ± 21.45

ROMEO (ours) Est Initial 11.52 ± 7.03 31.77 ± 26.29 9.60 ± 5.04 22.49 ± 14.67
ROMEO (ours) Est Final 11.33 ± 7.53 28.43 ± 25.24 9.61 ± 5.69 20.34 ± 13.60

Table 3: Comparison with the state of the art on the BEHAVE [2] and Inter-
Cap [8] datasets. We compare our approach with the state-of-the-art optimization-
based method PHOSA, and use state-of-art learning-based model CHORE (in gray)
as a reference. The table is split into two parts, using ground-truth (GT) and esti-
mated (Est) object masks, respectively. Our optimization-based approach ROMEO
achieves significant improvements in reconstruction quality over the state-of-the-art
optimization-based method [33] while reducing the gap to the learning-based method
[27] and outperforming its BEHAVE-trained model (*) using a cross-dataset evaluation
on InterCap [2], showing the better generalizability of ROMEO.

Method Mask Depth Stage BEHAVE
H ↓ O ↓

ROMEO GT Est Initial 8.53 ± 3.17 20.13 ± 16.34
ROMEO GT Est Final 8.51 ± 3.20 20.00 ± 16.04
ROMEO Est GT Initial 11.15 ± 6.79 29.95 ± 26.21
ROMEO Est GT Final 10.53 ± 6.95 23.71 ± 23.71

Table 4: Ablations of joint optimization using mixed estimated and GT data
on the BEHAVE test set. We observe a strong improvement of joint optimization in
terms of Chamfer distance by using ground-truth depth maps, yet no notable difference
in performance by using estimated depth on reconstructions using GT masks. Depth
map quality is thus crucial for the joint objective.

Next, we assess the performance of our depth-based object instance selec-
tion approach. We evaluate three selection techniques: (1) GT selection, which
computes the IoU between each candidate object mask and GT object mask,
and chooses the one with the highest IoU. Note that the GT object mask is
not accessible in real-world applications. (2) Heuristic selection, which computes
the IoU between each candidate object mask and the person mask, and chooses
the one maximizing this IoU, and (3) our depth-based selection, as discussed
in Sec. 3.2. Table 2 demonstrates that our depth-based selection enhances the
detection rate by 0.3% and IoU by 0.6%, approaching the performance achieved
with ground truth selection, thereby underscoring the efficacy of our method.

4.2 Joint Optimization

Baselines. We compare our approach with the state-of-the-art 3D human-object
interaction reconstruction methods PHOSA [33] and CHORE [27], which recon-
struct 3D models of humans and objects through joint optimization or using
learned implicit distance fields, with less emphasis on generalizability.

When evaluating using PHOSA [33], we manually annotate each object cat-
egory with contact and scale priors identically to previous work [27] for a fair
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Fig. 5: More examples of reconstructed 3D interaction models from in-the-
wild images. From left to right: input image, front and side views of our initial recon-
struction, and front and side views of our final reconstruction after joint optimization.
Our depth-based selection allows our method to reconstruct scenes with multiple peo-
ple and objects.

comparison between all approaches. We use PARE [15] to reconstruct 3D humans
for the same reason.

Quantitative results. Table 3 shows the reconstruction performance of all
methods on the test sets of BEHAVE and InterCap. We consider a setup where
ground-truth masks and depth maps are available, as well as a setup with access
to estimated masks and depth maps only. Note that not all samples are used due
to object detector failure. Results show that ROMEO outperforms PHOSA and
reduces the gap to learning-based CHORE, most importantly outperforming it
when evaluating its BEHAVE-trained model on InterCap in a generalization ex-
periment, proving the better generalizability of our method. The reconstruction
model of CHORE is trained with 3D data supervision. It is therefore especially
sensitive to the quality of the input segmentation masks, and can not perform
as well when object masks do not possess the noise-free quality of ground-truth
data. PHOSA relies on manual contact annotations, thereby implicitly assuming
a fixed type of interaction per object. It thus struggles with diverse interactions
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captured in BEHAVE. In contrast, we leverage the information provided by foun-
dational models to achieve significantly better results, in particular for objects.
Qualitative results. We show qualitative comparisons of ROMEO and PHOSA
in Figure 4. We note that our method reconstructs more plausible models, with-
out using any contact labels or fine-tuned category-specific parameters. We fur-
ther see that our joint optimization stage can effectively improve the reconstruc-
tions, even when the initial estimates are already reasonable.
Ablations. To demonstrate the effect of the quality of the segmentation masks
and depth maps, we conduct an ablation study using mixed estimated and GT
data. The results are shown in Table 4. Contrasting the “estimated masks, GT
depth maps” result with the estimation-only result in Table 3 suggests that the
quality of the depth maps determines the performance of our relative depth loss,
and that ROMEO can benefit from future improvements in depth estimation.

4.3 Reconstruction Generalizability

We evaluate ROMEO on several in-the-wild images featuring both object cat-
egories that are included in BEHAVE and InterCap, as well as novel object
categories. Results are visualized in Figure 1 and Figure 5. Due to having no
requirement for training data, our method is able to obtain good 3D reconstruc-
tion results even for unusual objects.

4.4 Implementation Details

During initialization, we use the Kaolin renderer [4] to render the depth maps
and silhouettes, which is considerably faster than the Neural Mesh Renderer [11]
used in previous work [33]. After optimizing each of 2000 randomly sampled
object rotations and translations using the silhouette loss and Chamfer loss for
70 steps, we pick the candidate with the lowest combined loss. We obtain the
human reconstruction from PARE [15]. Next, during the joint optimization, we
use the silhouette loss and relative depth loss to refine the object pose for at
least 500 iterations, after which we further optimize until the total loss does not
decrease for 100 consecutive iterations. See Supp. Mat. for further details.

5 Discussion and Conclusion

We present ROMEO, a method to reconstruct 3D human-object interaction mod-
els from RGB images. Our method benefits from foundational models on several
vision tasks and uses a novel yet simple optimization objective, eliminating the
need for manual contact annotations, 3D data supervision, category-specific pa-
rameter fine-tuning and prior knowledge of object scales. Experiments show that
ROMEO produces robust and high-quality reconstructions, outperforming the
SOTA optimization method and reducing the gap to the learning-based SOTA
method, and showing the best generalization on in-the-wild images. In conclu-
sion, our findings provide compelling evidence that reconstructing 3D human-
object interaction models does not necessarily require explicit 3D supervision.
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